Calculus AB

4-4

The Second Fundamental Theorem of Calculus -
If f is continuous on an open interval I containing a, then for every x in the interval,

$$
\frac{d}{d x} \int_{\mathbf{a}}^{\boldsymbol{x}} f(t) d t=f(x)
$$

What does this mean?

Find F as a function of x and evaluate it at $x=2, x=5$, and $x=8 .(\operatorname{pg} 294)$
68) $F(x)=\int_{2}^{x}\left(t^{3}+2 t-2\right) d t$
(a) Integrate to find F as a function of x and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a).

$$
\text { 76) } F(x)=\int_{0}^{x} t\left(t^{2}+1\right) d t
$$

Use the Second Fundamental Theorem of Calculus to find $F^{\prime}(x)$.
82) $F(x)=\int_{1}^{x} \frac{t^{2}}{t^{2}+1} d t$

Find $F^{\prime}(x)$.
90) $F(x)=\int_{2}^{x^{2}} \frac{1}{t^{3}} d t$

Assignment:
Pg. 294
67-91 odd

